Pervasive applications through scripted assemblies
of services

David Svensson, Goérel Hedin, Boris Magnusson
Department of Computer Science, Lund University
Ole Rémers v 3, 223 63 Lund, Sweden
Email: {david,gorel,boris}@cs.lth.se

Abstract— This paper proposes a technique for letting end
users build pervasive applications by combining services on
networked devices. The approach avoids relying on standardized
service interfaces which are deemed too limiting, and instead
makes use of migratable user interfaces and scripted combina-
tions of services.

I. INTRODUCTION

In a world of pervasive computing, people will encounter
a wealth of devices that offer software services in (typically
wireless) networks. These services will often be tied to the
particular devices, enabling control of and interaction with
the devices in powerful ways. We argue that in this setting,
interoperability is bound to become a major challenge.

A typical need that can be foreseen is the possibility
to combine services, utilizing the combined functionality of
several devices. Support for this can facilitate repeated use of
a set of connected devices, and also provide inherently new
functionality, not given by the individual devices themselves.

However, the device vendors cannot be expected to foresee
all possible combinations of services that can be demanded by
future users; combinations possibly including future services
and devices. This makes the usual approach, where one service
interacts directly with another service through a standardized
service-specific interface, too limiting. Instead, we propose
that the combination of services should be separated from
the services themselves, and that this combination is scripted,
rather than programmed, to make it easy to adjust by end
users. This will allow individual services to be developed
independently of other services, but still be integrated into
combined services.

In this paper, we describe a mechanism called scripted
assemblies, that supports such combination of independent
services. We have built an experimental system based on this
approach, and tried it out on example scenarios. The ideas
build on the MUI system [1], that supports remote control
through migratable user interfaces. The work has been carried
out within the EC-funded integrated project PalCom [2].

The rest of this paper is organized as follows. In Section 11,
we present our basic approach. Sections Ill to V go into more
detail about non-scripted and scripted assemblies, dealing
with issues in the assembly description language. Section VI
relates to other work in this area, and Section VII lists some
things that remain to be investigated and developed. Finally,
Section VIII concludes the paper.

Il. BASIC APPROACH

Figure 1 illustrates our approach to dealing with interop-
erability. There are two services, A and B, located on two
different devices, D4 and Dpg. The user wants to use and
combine these two services. To accomplish this, the user
has a third browser device that supports device and service
discovery. Typically, the browser device is a handheld like a
PDA or a mobile phone, but it could also be a general-purpose
computer, e.g., a laptop. Each of the services A and B has a
service description that can be migrated to the browser device,
and rendered as a user interface there, in order to remotely
control the service.

In Figure 1(a), the user interacts with A and B through
these migrated user interfaces that are rendered on the browser
device. This remote control mechanism is provided by a ser-
vice uiDisplay that runs on the browser device. The uiDisplay
service receives service descriptions from remote services,
creates corresponding user interfaces that are shown on the
screen of the browser device, and connects to the services
over the network.! In the figure, the service descriptions are the
gray boxes with a small “hook”. After this setup process, there
is a two-way, peer-to-peer communication between uiDisplay
and each of the remote services A and B. When the user
performs an action in one user interface, a command is sent
over the connection to the remote service, which can react
appropriately. When something happens at the remote service,
typically as a result of physical interaction with the device
on which the remote service lives, a command is sent in the
other direction, typically updating status information in the
user interface on the browser device.

The interaction through user interfaces solves parts of the
problems with standardization of service interfaces. In this
case, the human is in the loop, and can make intelligent
interpretations of changes in the service descriptions (which
show up in the user interfaces). When a new feature is added to
a device, perhaps through an update of its firmware, a change
in the service can be directly spotted and utilized. There is
nothing in uiDisplay itself that is tied to the specific service.

The other part of the figure, 1(b), shows how interaction
with the services can be automated, realized through an
assembly. The assembly is a service which performs much the

1The migration of user interfaces, and adaptation to different client plat-
forms, is a research area in itself. See, e.g., [3].



uiDisplay

Browser device Ds

(a) The user interacts with two services, A and B,
through user interfaces that are rendered on his browser
device. The user interfaces are generated according
to service descriptions (shown as small boxes with
“hooks”).

Fig. 1.

same function as uiDisplay, but instead of rendering service
descriptions as user interfaces, it coordinates the services
according to an assembly descriptor (shown as a scroll). The
assembly descriptor contains a specification of a combination
of services, residing on different devices. Simple assembly
descriptors just specify a number of connections between
the services, while more advanced assembly descriptors also
contain a script, which coordinates the interaction in a more
fine-grained way. The assembly shown in Figure 1(b) is of the
latter type. It specifies how different events received from A
lead to one or more commands sent to B.

The key point in our approach is that interoperation is
separated from services. This is what makes it possible to
combine groups of services that were not created together,
without restraining all of them to use standard service inter-
faces that were already established when the oldest service
was created. In the case of user interface rendering, the
user controls the interoperation directly, something which is
good for trying things out in order to see how they work.
This can be impractical, though, for more complex or long-
lasting tasks. For these, the assembly works better. The goal
is that assemblies should be possible to create and modify
by end users. For this reason, we propose that assemblies
should be created using a scripting language, rather than
using a general-purpose programming language that would
require programming skills. In some cases, the interoperation
of two services might, however, require programming. For
example, in order to convert between different kinds of real-
time data streaming formats. To handle this, we propose that
such problems are delegated to separate software services.
Such software services need to be programmed, but can be
used and combined in an assembly by an end user.

I1l. ASSEMBLY REPRESENTATIONS

Our model of an assembly consists of the following parts:

1) A set of devices
2) A set of services (on those devices)
3) A set of connections between those services

\

=
1)
18]

Browser device Ds

Assembly

(b) An assembly on the browser device coordinates
A and B, automating the desired combined behav-
ior.

Our approach to interoperability between services.

4) A set of offered synthesized services, generated by the
assembly

5) Logic and scripts defining and constraining how the
assembly should be deployed and executed.

Furthermore, an assembly can be fully bound, forming
a composition of particular identified services on particular
identified devices, or it can be in various ways partially
unbound, e.g., to act as a template. In this paper, we will
focus on fully bound assemblies.

It is useful to discuss the assembly from several different
perspectives: the end user, the expert user, the tools manipu-
lating the assembly, etc. In our system, we use the following
important representations of the assembly:

1) An XML representation that is used for storing the
assembly in a file system, and for moving or copying it
between different devices.

2) A concrete syntax that is used in documents like this
to show the same details as in the XML representation,
but in a syntax more readable by humans. In principle,
this concrete syntax could also be used by editing tools
on laptops for creating or editing assemblies by expert
users.

3) A representation as an attributed abstract syntax tree
(AST) that is used internally by tools accessing and
manipulating the assembly. We use the JastAdd compiler
construction system for supporting AST programming
[4], allowing the internal tools to add computations on
the AST as modular aspects. The XML and concrete
syntax can trivially be unparsed from the AST repre-
sentation, programmed as simple JastAdd aspects.

4) Tool-specific editing representations for displaying parts
of the assembly information to end users, often in a
visual way. E.g., a PalCom browser device can dis-
play the connections between services as lines between
boxes, and provide graphical commands for composing
or changing an assembly.

In this paper, we will use the concrete syntax when provid-

ing examples. In Section 1V we will discuss simple assemblies

with devices, services, and connections, but without scripts. In



Section V we will discuss how scripts can be added to capture
the execution logic of an assembly.

1V. SIMPLE ASSEMBLIES
A. A remote slide show assembly

Some simple assemblies consist only of a set of connections
between services on particular devices, and have no logic of
their own. As an example, consider an assembly Remote-
SlideShow which composes a video projector, a laptop, and a
PDA. Slides are sent from the laptop to the video projector,
and the user controls the actions, next slide, previous slide,
etc., from the PDA. The assembly itself resides on the PDA.

To illustrate the use of this assembly, consider the following
scenario:

The user is a university professor who has weekly
lectures in room E:1406 at the university. On the first
lecture, she creates the assembly RemoteSlideShow
by connecting her laptop, her PDA, and the video
projector in room E:1406. This is done by a few
visual commands on the PDA. On the PDA, she
then uses commands to select the desired presen-
tation, and to step through the slides. At the next
lecture, she simply activates the existing assembly,
which will then discover and connect the devices
according to the assembly description. She can then
immediately select the appropriate presentation and
step through the slides.

B. Local device and service names

The RemoteSlideShow assembly is shown in Figure 2 in
concrete syntax. The assembly introduces a number of local
device names: projector, laptop, pda; and a number of local
service names: control, images, uiDisplay, and imageViewer.
These local names are used within the assembly, e.g., to define
the connections, and inside assembly scripts (discussed later).

Typically, the local names are taken from the logical names
used in the device and service descriptions of actual devices.
But refactoring to other names inside the assembly (for greater
readability), would not affect the behavior of the assembly.
These names are not used for binding the assembly to real
devices and services. For such binding, the global names are
used (see below).

In the proposed language, the service names are simple
rather than structured. However, it could easily be generalized
to support structured names. This would be useful since the
services on a device are typically structured in a hierarchy, and
it would be useful to keep that hierarchy in the local names
of the assembly.

C. Global names of devices and services

Devices and services are identified by globally unique
names. The globally unique names have an internal structure
including a globally unique identifier, versioning information,
and a logical name (which does not need to be unique).
Typically, these names are quite long, and not intended to
be very readable to a human. In the example in Figure 2,

we simply display them as “global-device-name” and “global-
service-name”. These unique names are used for making
it possible to reconnect an assembly to the same devices
and services as used when the assembly was constructed.
The assembly also has such a unique name itself (the value
of “this”), with the same structure as a service name. The
versioning information in the globally unique names is used
by tools to make safe upgrades of an assembly when a service
or a device has been upgraded. Note, however, that when an
assembly is upgraded (rebound device and/or service), this has
to be somehow visible to the user, and testing might be needed
(unless it can be deduced that testing has already been carried
out).

Two different devices, e.g., two projectors, can have (dif-
ferent instances of) the same service on them. To uniquely
identify a service instance, i.e., a service on a particular device,
the global names of the hosting device and the service are
combined.

D. Connections

The connections part in the assembly specifies how the
services in the assembly are connected to each other, using
clauses on the following form:

provi di ng-service on device-1 ->
cust oner-service on device-2

Connections can be either data connections (uni-
directional), sending messages from provider to customer,
or control connections (bi-directional), where messages
can go in both directions. For example, in Figure 2, the
connection i mages on | aptop -> inageVi ewer
on projector is a data connection where JPEG images
are sent from the laptop to the projector. The connection
control on laptop -> uiDisplay on pda is a
control connection. As an example of messages over this
connection, the PDA can send a message “next” to the laptop,
to go to the next slide. The laptop will then send a status
message back to the PDA, showing the name of the currently
shown slide.

MIME types are wused for specifying the types
of connections. For example, the type of the
i mage-i mageVi ewer connection is i nage/j peg,

whereas the type of the cont r ol - ui Di spl ay connection
is application/x-pal comcontrol +xm . These
types are not explicitly visible in the assembly, but belong to
service descriptions that are available for each device through
the discovery protocol. The service description also classifies
a service as being either provider or customer.

E. Satic-semantic constraints on the assembly

There are certain semantic constraints on how assemblies
may be constructed. The local names should be declared and
used correctly. E.g., two devices named the same way is
forbidden, using an undeclared name is forbidden, using a
device name where a service name is expected is forbidden,
etc. This boils down to normal name and typechecking rules
similar to those in simple programming languages.



F. Dynamic constraints on the assembly

There are additional semantic constraints that can be
checked only dynamically, i.e., when trying to activate the
assembly:

1) Device bound: When activating an assembly, the device
declarations will be bound to descriptions of actually discov-
ered devices. Naturally, it may be the case that it is not possible
to discover a given device. It might be broken, turned off, not
within range, etc. The operation of the assembly may then be
limited for the moment.

2) Service bound: Even if a device is bound, it is not
guaranteed that all its services are available. Some services
may be down, depending on the state of the device. It might
also be the case that when an assembly is changed so that
a device declaration is rebound to another device, the new
device does not have all the declared services, and this is then
flagged as errors or warnings. The tools can then guide the
user in trying to rebind to another service on the same device,
or possibly to a service on another device.

3) Connection well formed: If the services of a connection
are bound, it is checked that the connection is well formed. I.e.,
the service declared as the providing service should indeed be
specified as a providing service in its service description, and
similarly for the customer service. Furthermore, the MIME
types of the provider and the customer should match.

V. SCRIPTED ASSEMBLIES

In the RemoteSlideShow example, the assembly simply
connects existing services directly to each other. A more
advanced assembly can itself receive and send messages and
perform actions internally. These actions are written in a
simple script language that can be used by an end-user. In the
present experimental system, the script is edited as text, but in
future versions, we plan to provide visual tools for editing the
scripts. If the internal logic is more complex than the script
language can handle, parts of the logic can be delegated to new
software services, programmed in a general-purpose language.

Below, we extend the assembly representation to include a
scripting possibility. The basic idea is that the assembly can be
connected to other services to receive and send messages. The

body of the script is an event handler that receives messages
from other services and acts upon them. The possible actions
(supported so far) are to send messages to other services and
to store values in variables local to the script.

A. GeoTagger as a scripted assembly

GeoTagger is one of the end-user scenarios studied in
PalCom, see Figure 3. It is an application intended for use
by landscape architects. The idea is that photos taken with a
camera should be automatically tagged with the current GPS
coordinates and stored in a backend database on a laptop.
This application is realized as a scripted assembly running
on a handheld PDA. The assembly combines and coordinates
services running on the camera, the GPS device, and the
laptop.

Figure 4 shows the scripted assembly. In the event handler,
clauses are written as

when nessage from servi ce on device {
actions
}

where the actions can access data in the message, send new
messages to other services, and perform simple computations
(assignments of local variables).

The service coordStuffer on the PDA device is a software
service that can receive an image in JPEG format, and a GPS
coordinate, and which sends out an image tagged with the GPS
coordinate. This is a typical example of a computation that is
too complex to express directly in the scripting language, and
that is instead implemented as a software service.

As shown in the example, the assembly interacts with
other services by receiving and sending messages. Thus, the
assembly implicitly plays the role of a service that connects to
the other services. The “this” expression used in the assembly
script refers to the assembly itself viewed as a service.
Received messages that are not listed in the event handler
are simply ignored.

B. Additional constraints on the assembly

The introduction of the script in the assembly makes it pos-
sible and necessary to check additional constraints, statically

assenbl y RenoteSli deShow {
this = gl obal -servi ce-naneg;

devices {
pr oj ect or

= gl obal - devi ce- nane;

| apt op = gl obal - devi ce- nane;
pda = gl obal - devi ce- nane;

services {
control

on laptop =

gl obal - servi ce- nang;

i mages on | aptop = gl obal - servi ce- nane;
ui Di spl ay on pda = gl obal - servi ce- nane;
i mageVi ewer on projector = global -service-naneg;

connections {
control

on laptop -> ui Display on pda;

i mges on |l aptop -> inageVi ewer on projector;

}
}

Fig. 2.

A simple assembly.



Handheld

Fig. 3.

and dynamically. In the static part, the name and type analysis
is extended to the local variables. In the dynamic part, it is
checked that the bound services actually have the incoming
and outgoing messages used in the script, with the appropriate
message structure.

C. Loopback mechanism

It might be the case that the assembly is located on the same
device as some of the other services. A loopback mechanism is
used which allows the assembly to communicate in the same
way with these services as with services on other devices,
without causing any messages to go out unnecessarily on the
network.

The loopback mechanism is used also if the assembly
connects two services on the same device: the network is
transparent, and messages between services will only go out
on the network if the services are on different devices.

Note that it is often the case that services on the same device
are tightly bound and communicate with each other directly
(not via an assembly). For example, when taking photos with a
digital camera, the photos will be stored locally on the camera.
This process is a bottleneck and needs to be carried out as
efficiently as possible, to allow pictures to be taken at high
speed.

Assemblies for connecting services on the same device are
useful when the services are more unrelated, i.e., when they
could in principle be located on different devices, but just
happen to be located on the same device.

D. Moving the assembly?

For a scripted assembly, its location can dramatically affect
the efficiency. For the GeoTagger, there will be large messages
sent that include JPEG images. Suppose the assembly is
located on the PDA (a natural choice since an assembly
interpreter will need some kind of general-purpose platform

Camera

GPS

Backend

The GeoTagger scenario

to run on). In this case, JPEG images will be sent from the
camera to the PDA, coordinates added to the image on the
PDA, and the “stuffed” image is sent to both the camera and
the laptop backend.

Clearly, if the coordinate stuffer and the assembly were
moved to the camera or to the laptop, network traffic would
be substantially reduced. It might be possible to move them to
the camera if it is sufficiently advanced to serve as a general-
purpose software service platform. And moving them to the
laptop should be possible, but then the assembly would rely
on the laptop which might be heavy for the user to always
carry with him.

Note that if the assembly is moved to another device,
its script does not need to change. There is nothing in the
assembly script that makes it depend on its own platform.

If the assembly and coordinate stuffer are moved to the
camera or laptop, it might still be the case that the user would
like to control the assembly from the PDA, e.g., to activate it.
Future versions of our system will support this by using an
uiDisplay service for remote control of assemblies.

VI. RELATED WORK

The scripted assemblies we propose are related to W3C’s
Web Services Choreography Description Language [5]. WS-
CDL choreographies are expressed in an XML language,
and govern peer-to-peer interoperation between a number of
services. Like our assemblies, the choreographies are external
to all the participating services. One thing that differs is the
context. WS-CDL is intended for E-business, taking place
between Web services on the Internet. There is no notion of
physical devices, which are important in our approach, and in
pervasive computing in general. The purpose of WS-CDL is
also not on keeping interoperability between services when
facing service interface changes. Instead, the choreography
is more like a contract that is decided on before a business



assenbly GeoTagger {
this = gl obal - servi ce- naneg;
devices {
gps = gl obal -devi ce- nane;
canera = gl obal - devi ce- nang;
backend = gl obal - devi ce- nane;

pda = gl obal - devi ce- nane;
services {
gps on gps = gl obal -servi ce-nane;

photo on canera = gl obal -servi ce-naneg;

storage on canera =
di splay on canera =

gl obal - servi ce- nane;
gl obal - servi ce- nang;

coordStuffer on pda = gl obal -servi ce-nane;
phot o_db on backend = gl obal - servi ce- nane;

connections {
gps on gps -> this;
photo on canera -> this;
storage on canera -> this;
di splay on canera -> this;
coordStuffer on pda -> this;
phot o_db on backend -> this;
}
script {
vari abl es {

text/plain | at est Readabl eCoor di nat e;
t ext/ nmea- 0183 | at est St andar dCoor di nat €;

event handl er {

when position fromgps on gps {
| at est Readabl eCoor di nate = t hi sevent. WGS84;
| at est St andar dCoor di nate = t hi sevent. NVEA- 0183;

when photo_taken from photo on canera {
send show(| at est Readabl eCoordi nate) to display on canera;
send sendnme_photo() to storage on canera;

when photo from storage on canera {

send sendne_st uffed_i nage(
| at est St andar dCoor di nat e,
to coordStuffer on pda;

t hi sevent . Phot 0)

when stuffed_image from coordStuffer on pda {
send store_photo(thisevent.|nage) to photo on backend;
send store_photo() to storage on canera;

}
}
}
}

Fig. 4. A scripted assembly.

relationship is started, making it possible for all parties to
keep the internals of their services private.

Another closely related project is Obje at PARC [6]. Obje
targets the same basic problem, and seeks to enable inter-
operability without relying on domain-specific standards. A
difference is that Obje builds on mobile code. Using mobile
code, in the form of a proxy object that is distributed to
clients and executed there, services are able to “teach” clients
how to communicate. This way, it is possible to let users
combine their clients with new services, some of whose
features were unknown at the time the clients were written.
There is also a possibility to let the proxy object generate a
user interface, giving a situation similar to that of Figure 1(a),
where the proxy object corresponds to our service description.
Another difference, though, is the way of programmatically

interfacing the proxy objects. Obje proxy objects are (Java)
code, which requires the capability of running Java on clients,
and their interfaces are so called meta interfaces, offering
only very generic operations, such as reading a chunk of data.
In contrast, our service descriptions are distributed as XML,
which can be handled on almost any device, and they contain
domain-specific operations: the operations are invoked by the
user through a user interface, or by the assembly script. There
is no concept in Obje corresponding to the assembly. Instead,
the user directly connects components written in Java.

Cooltown at HP Labs [7] is an early pervasive computing
project, whose target is to bring the Web to things in the phys-
ical world. By embedding wirelessly accessible web servers
into things, it is possible for a user to interact with them in
a Web browser on his handheld device. It is also possible to



connect one device to another, by sending a URL to one of the
devices, identifying a resource on the other. There is nothing
domain-specific in the Web protocols involved, so this can be
seen as a way of achieving basic parts of the interoperability
we look for. But, apart from the client-server model being
inherent in the interaction between Web clients and servers,
one big difference is that our assemblies can define other
aspects of a service interoperation than just pure connections.

Jini and UPnP are important technologies for network
services. Jini [8] is tied to the Java programming language, and
clients interact with services through proxy objects, distributed
to the clients at discovery time. Our objection, also stated
by Obje, is that this approach requires the interfaces of the
proxy objects to be standardized at the domain level. To partly
overcome this, there is a framework for user interface services
built on top of Jini [9]. But, still, the tight connection to
the Java language makes it inconvenient to build assemblies
on top of Jini. UPnP [10] is not tied to Java, or to another
programming language: devices and services are described
using XML. But the focus in UPnP is on standardization
of device types at the domain level. There are standards for
devices such as printers, scanners, lighting controls, and digital
security cameras, among others [11]. Therefore, UPnP is not
directly usable as a platform for assemblies, either.

VII. FUTURE WORK

In our continued work on scripted assemblies, we will look
into a number of issues including synthesized services, binding
of services, message types, and service versions. Synthesized
services are services that are offered by the assembly itself,
allowing control of the combination of services, rather than
of each service individually. A simple case of a synthesized
service could be to collect the most important parts of the
participating services’ interfaces into one interface, for con-
venience. Another case could be to have an interface for
changing the activity state of the whole assembly.

So far, we have considered only fully bound assemblies
where each service declared in the assembly is bound to
a specific service on a specific device. We will look into
more elaborate support for service bindings. One example
is to investigate cases where an assembly can be functional
without all services being present. This may give degraded,
but acceptable, functionality of the assembly. In other cases,
it may be enough with one out of a set of services for full
functionality. There are also possibilities for experimenting
with partially bound assemblies, where the identity of a device
or service is not filled in, but can be specified later, perhaps
when the assembly has been moved into a new context. In
relation to this, versioning of assembly descriptors becomes
important.

Currently, we demand exact matching of MIME types for
connecting services. However, we will investigate the use of
subtyping to allow services to be connected where the types
match only partially.

VI1Il. CONCLUSIONS

This paper has presented scripted assemblies as a technique
for letting end users combine services, and for letting them
control the cooperation between services in a script. The
assembly concept allows the interoperation between services
to be separated from the services themselves. As a conse-
quence, it is possible to adjust aspects of the interoperation
at a later time, without re-programming the services, and to
incorporate services with different, or changed, interfaces, by
manipulating the assembly only. We see this as a way of easing
interoperability in pervasive computing systems.

In the paper, the current language of assembly descriptors
has been presented, exemplified by scenarios from the PalCom
project, and possibilities for future development and experi-
mentation have been discussed.

REFERENCES

[1] D. Svensson, B. Magnusson, and G. Hedin, “Composing ad-hoc applica-
tions on ad-hoc networks using MUI,” in Proceedings of Net.ObjectDays
2005, 6th Annual International Conference on Object-Oriented and
Internet-based Technologies, Concepts, and Applications for a Net-
worked World, Erfurt, Germany, September 2005, pp. 153-164.

[2] PalCom. Palpable Computing: A new perspective on Ambient Comput-
ing. [Online]. Available: http://www.ist-palcom.org/palcom-info.pdf

[3] P. Rigole et al., “A Component-Based Infrastructure for Pervasive User
Interaction,” in International Workshop on Software Techniques for
Embedded and Pervasive Systems STEPS 2005, Munich, Germany, May
2005.

[4] T. Ekman, G. Hedin, and E. Magnusson. JastAdd: an open-
source Java-based compiler compiler system. [Online]. Available:
http://jastadd.cs.lth.se

[5] N. Kavantzas et al. (2005, Nov.) Web Services Choreography
Description Language Version 1.0. W3C. [Online]. Available: http:
IIwww.w3.0rg/ TR/2005/CR-ws-cdl-10-20051109/

[6] “Obje Interoperability Framework,” Palo Alto Research Center (PARC),
2003, http://www.parc.com/research/projects/obje/Obje_Whitepaper.pdf.

[7]1 T. Kindberg et al., “People, Places, Things: Web Presence for the Real
World,” in Proc. 3rd IEEE Workshop Mobile Computing Systems and
Applications (WMCSA 00), 2000, pp. 19-28.

[8] J. Waldo, “The Jini Architecture for Network-Centric Computing,”
Communications of the ACM, pp. 76-82, July 1999.

[9] B. Venners. (2005) The ServiceUl APl Specification, Version 1.1a.
[Online]. Available: http://www.artima.com/jini/serviceui/Spec.html
[10] UPnP™ Forum, “UPnP Device Architecture 1.0,” Tech. Rep., December

2003, version 1.0.1.
[11] —. UPnP™ standards. [Online]. Available: http://www.upnp.org/
standardizeddcps/



