
Traveling Architects – A New Way of Herding
Cats

Aino Vonge Corry1, Klaus Marius Hansen1, and David Svensson2

1 Department of Computer Science, University of Aarhus
Aabogade 34, 8200 Aarhus M

{apaipi,klaus.m.hansen}@daimi.au.dk
2 Department of Computer Science, Lund University

Ole Römers väg 3, 223 63 Lund, Sweden
david@cs.lth.se

The PalCom Project, http://www.ist-palcom.org

Abstract. Making software developers work towards a common goal
may be likened to herding cats. If we further spread developers around
the globe, we run increased risks of being unable to design and impose
coherent software architectures on projects, potentially leading to lower
quality of the resulting systems. Based on our experiences in a large,
distributed research and development project, PalCom, we propose that
employing techniques from active user involvement in general (and from
participatory design in particular) may help in designing and sharing
quality software architectures. In particular, we present the Traveling
Architects technique in which a group of architects visit development lo-
cations in order to engage developers and end users in software architec-
ture work. We argue that using techniques such as these may potentially
lead to higher quality of software architectures in particular for systems
developed in a distributed setting.

1 Introduction

Consider the following scenario, taking place in a distributed software devel-
opment project, where development teams at different sites cooperate towards
forming a common architecture:

Two Traveling Architects, Mario and Lisa, visit a site in order to have
a Traveling Architects workshop. The developers at the site have prepared
a presentation of the end-users, the architectural requirements and the
prototype they have imagined. At this site they work with rehabilitation of
people who have had hand surgery. They have a number of scenarios that
they want supported with a prototype, such as sharing of ideas between a
group of rehabilitation patients.

After the presentation, the developers go through the different parts
of the prototype they want to build and discuss whether it would be ben-
eficial to implement all of it. Lisa and Mario advice on the use of the



current common architecture, and note components that are candidates
for placement in the project’s toolbox of reusable components. They agree
that some parts, such as the recording of video at consultations with
physiotherapists, has to work in order for the end-users to be able to
participate in the next application design meeting. Other parts, like the
sharing of data over wireless net, could be simulated, because designing
them wouldn’t add to the common architecture.

During the meeting, Lisa and Mario create Unified Modeling Lan-
guage (UML; [19]) diagrams of object and class models and sketch a
documentation note on the prototype. After the meeting, the documenta-
tion note is finished and sent to the application developers to check for
misunderstandings. Returning from the site, a meeting with other archi-
tects in the project is held in order to propagate the knowledge of the
requirements and the input to the common architecture.

This is an example of the use of the Traveling Architects technique, taken
from our work in the EC-funded Integrated Project PalCom [20]. PalCom ex-
plores the concept of palpable computing, denoting a new kind of ambient com-
puting which is concerned with the above and other user-oriented challenges in
complex and dynamic ambient computing environments. The two primary goals
of the PalCom project are to explore the concept of ‘palpability’ and to design
an open software architecture for palpable computing. In the following section
we will present more about the project as a background, before discussing the
Traveling Architects technique in more detail.

2 The PalCom Project

One of the subprojects in PalCom is the “Pregnancy and Maternity” project,
where IT support for pregnancies is investigated. The vision is to equip pregnant
women with a device called ‘the Stone’, which can support them during their
pregnancy:

Alice comes home, greets her husband Bob and wants to show him
something on a device she holds in her hand. The device has a very
small screen and suggests using the TV as an external display. After
Alice has accepted it, a film is shown on the TV. It is a recording from
the ultra sound scan she went to that day because she is pregnant.

Since Alice is also diabetic, she has to measure her blood sugar level
regularly. Her measurements are uploaded daily to the national Electronic
Health Record (EHR) system, where experts will get a warning if the
measurements are out of the ordinary. She has set the Stone to upload the
data every night without her need to accept. One night the EHR system is
unavailable. The Stone lets Alice know that is has tried to send the data
without success. She then places it next to her computer, and the display
is now on her computer screen. She points at the notification about the
missed send of a message, and a graphical view of the connections is



shown. On this she can follow the connections between devices and see
that the Stone looses the connection with the EHR system at the EHR
system installation and thus the problem lies at their end, not hers. She
chooses for the Stone to try and contact the register until is succeeds and
then let her know that it has succeeded.

When the Stone and its environment work as they are supposed to, the
user does not have to think about the state of it or how it works. Only in
situations where there is a usage breakdown should the user become aware that
something should be changed and maybe decide how it should be changed. This
visibility/invisibility trade-off is one of the challenges of PalCom.

In the situation where the Stone has to make use of external displays and key-
boards, there is a composition of services and devices in the system. This compo-
sition happens dynamically and can be decomposed at any time, yet still keeping
the system as a whole stable. Composition/decomposition and change/stability
are also challenges in the PalCom project.

Twelve companies and universities from six European countries take part in
PalCom. The research work is organized into sixteen work packages, and each of
the partners are involved in several of them. The activities reported in this paper
concern the connection between the work package responsible for the common
PalCom architecture, and the application prototyping work packages, which work
with prototypes at different sites, forming palpable computing in contact with
its users.

Figure 1 shows the overall development strategy in the project: results from
general design and architecture work influence the application prototypes, and
vice versa, throughout the 48-month project.

The application prototyping work packages are the following:

– WP7 On Site supports the work of professionals working in the field, in
particular landscape architects. One example of work is the prototype Site-

 

Fig. 1. Overall development strategy in PalCom.



Sticks, which is used for location-based visual assessment at a construction
site where a major European bank is building their new headquarters.

– WP8 Major Incidents supports first aid personnel at the site of a major
incident, during ambulance transport of patients, and after having arrived
at the hospital by the use of among others sensor networks. The work in this
work package is carried out together with the hospital, the police and the
fire department in Aarhus, Denmark.

– WP9 Pregnancy and Maternity creates application prototypes supporting
women and their families during pregnancy and (early) maternity. The Stone,
discussed above, is one of the WP9 prototypes.

– WP10 Surgical Rehabilitation builds prototypes in the context of rehabili-
tation after hand surgery, in cooperation with Malmö University Hospital.
One example is a video recording prototype which explores tangible user
interfaces in the context of physiotherapy consultation.

– WP11 Care Community supports disabled children and adults in rehabilita-
tion, both at the hospital and, e.g., in the swimming pool. One prototype is
the Active Surfaces, where a set of computerized tiles to be used in the swim-
ming pool can be configured by a therapist for aid in various sequencing and
positioning exercises. Another aspect of this work package is the research in
incubator support. The Incubator prototype makes it possible for doctors to
manipulate the position of a baby without opening the incubator, preserving
the micro-environmental conditions inside.

– WP12 Transient Locations supports users seeking connectivity in ad-hoc
and hybrid networks. The prototype RASCAL (Resilience and Adaptivity
Scenario for Connectivity over Ad-hoc Links) makes use of agent technology
for adapting to available network access resources and to get an overview of
possible connectivity issues.

3 Introducing the ’Traveling Architects’ Technique

The PalCom project has a number of challenges as alluded to by the above that
are of high relevance to software architecture design in the project:

– Distributed development teams working with actual end-users at various loca-
tions. The collaboration with these end users at specific locations are crucial
in understanding and designing for local work practice. One example (given
in Section 2) is the collaboration with landscape architects.

– An iterative, experimental, and incremental approach to development. The
project has a high degree of complexity, uncertainty and potential change
of requirements. This means that the project employs agile development
principles [11]. One consequence of this is that the software architecture is
continually evolving and no full set of architectural requirements exists for
the software architecture at a given point in time. Further, during our initial
Traveling Architects work there were not always clear guidelines that could
be readily presented to the prototyping teams. We could often only provide



them with guidelines as to what direction the architecture should progress
and whether their architectural requirements were addressed by others.

– Limited central control of software architecture design. Creating a software
architecture in PalCom is in many ways a consensus-making process. With
the outset in the central challenges of palpable computing on the one hand
and concrete, usable application prototypes on the other hand, the archi-
tecture is gradually designed and evolved, catering for functional as well as
quality requirements.

A Definition

To tackle such challenges, it was decided to form a team of architects that would
be responsible for maintaining the architectural vision of PalCom by both work-
ing from the specific (application prototypes) and the general (the concept of
palpable computing and architectural requirements) and for making sure that
this vision was shared by all sites. In this way, the concept of ’Traveling Archi-
tects’ was born. To be more precise, we define the concepts as follows:

Traveling Architects: a group of architects responsible for maintaining
software architectural assets in a distributed development project by vis-
iting development sites in order to design, evaluate, and enforce a soft-
ware architecture in active collaboration with developers and possibly end
users

If we dissect the definition, a number of components are of interest in this con-
text: “group of architects”, “visiting”, and “active collaboration”.

With respect to the group of architects, the concept is related to the Archi-
tectureTeam pattern from Coplien’s set of organizational patterns [8]. The main
similarity is that they form a team of architects that can communicate about
the architecture with each other and the groups of developers. In Coplien’s Ar-
chitectureTeam, the team of architects makes the initial architecture, which is
not the case for the Traveling Architects. They spread the word of the evolving
architecture and collects input to its evolvement. The decision of the concrete
architecture is done in a team of architects of which the Traveling Architects are
members. This team is built like an ArchitectureDefinitionTeam as described in
Mezsaros’ patterns [17].

The rationale for actually “visiting” remote development sites is closely con-
nected to the rationale for “active collaboration” which is again closely connected
to the concept of ’participatory design’. In fact, the Traveling Architects tech-
nique may be seen more generally as part of an attempt to employ participatory
design techniques in software architecture work. Thus, we describe this concept
and its potential relation to software architecture next.

Participatory Design and Software Architecture

Participatory design [13] is concerned with involving stakeholders (e.g., develop-
ers, end users, managers, or customers) of IT systems in the collective design of



these systems. This is done for both moral and practical reasons [7]: Practitioners
are the ones who need to live with the consequences of IT systems and they are
the ones who have the real competence in what is to supported and who know
the real, practical problems. Bringing diverse and indispensable competencies
together is thus seen as a main part of doing systems development3.

Concretely, design is often done collaboratively in workshop-like settings by
users and designers/developers and informed by (ethnographic) studies of actual
work practice [5]. The following Figure 2 illustrates the concepts at play:

contextualized 

artifacts

practice

designanalysis

Fig. 2. Artifacts in participatory analysis and design (adapted from Mogensen
and Trigg [18])

Here it is illustrated how analysis (e.g., work analysis through ethnography
or participatory analysis), design (e.g., design of user interfaces), and practice
(e.g., the work of users collaborating in design or analysis) communicate and
collaborate through common artifacts. Such artifacts could, e.g., be user sto-
ries, sketches on whiteboards, or actual prototypes of applications. A number of
techniques may be employed in order to work with and create these artifacts col-
laboratively: creating mock-ups, cooperative prototyping, future workshops [13],
or use of situation cards [18] are examples of such techniques.

An example from PalCom is the use of participatory design at workshops in
the Pregnancy and Maternity project. A number of healthcare providers involved
in pregnancy were gathered at a workshop. They were given an introduction to
the ideas formed by the designers. The ideas were based on field work done in
the healthcare system and thus grounded in the work of the people present.
The healthcare providers did not show great enthusiasm until we presented a
concrete artifact to them. As an example of the Stone we had discussed with them

3 Indeed some of the work on participatory design has influenced current thinking
on software methods although techniques such as the On-Site-Customer of eXtreme
Programming [4] has taken an analytical standpoint, removing practitioners from
their work.



previously, we had brought a PDA with a primitive application. The application
could, e.g., send a Java program to a mobile phone in order to make it vibrate
at given intervals. This was done in order to help the pregnant women do their
birth preparation exercises. The healthcare providers responded to the artifact,
now suddenly understanding the concept and able to form new ideas also for
extensions of functionality. The change in their attitude, when presented with
an artifact, was remarkable. We have seen this effect numerous times in the
PalCom project. Sometimes with applications, other times just with screenshots
or natural artifacts, such as actual stones.

The main insight we use here is then that the same set of concepts as pre-
sented and illustrated above can be applied to the creation of software archi-
tecture rather than for the design of artifacts directly supporting work practice
of users. Figure 3 tries to illustrate this. Here, the practice involved is that of

software

architecture

developers'

practice

architecture

design
analysis

Fig. 3. Participatory design of software architectures

developers (and perhaps transitively or directly that of end-users) including the
designs they have produced, application architectures, prototypes etc. The arti-
fact that is collaboratively being constructed is a software architecture in vari-
ous forms: UML-based descriptions, architectural prototypes [2], verbal accounts
continuously being given by developers and architects etc. The next sections will
discuss the generalizability of the approach and then detail our experiences with
the Traveling Architects approach and discuss concrete details of how to involve
developers in the architecture work.

Generalizability

A natural question to pose is to which extent the PalCom experience is unique
thus making the experience of the Traveling Architects only relevant to this
particular project? Here, we point to two concrete examples of development



efforts that have many of the same project characteristics as PalCom and that
could thus reasonably use the presented techniques.

The first example is a set of projects aiming at realizing Danish EHR systems
in all hospitals by 2006 [10]. Each of 14 Danish counties have had the respon-
sibility of introducing an EHR system for the public hospitals in that county.
This approach was chosen for multiple reasons: one was to be able to use various
vendors in order to get vendors to compete on price and quality and another was
that local hospitals have competent staff with partially local competences that
need to be supported. One consequence of this choice has been that there has
been no central control and thus no single software architecture (or integration
platform) for all systems. This gives a number of challenges in integrating patient
data from the systems, a particular twist to the problem being that the counties
will merge to become larger units by 2007. Some of the issues of integrating the
disperse systems are discussed in [14].

The other example comes from that of a globally distributed company that
one of the authors worked with as part of an effort to build a series of prototypes
for a global customer service system. The company had previously built a number
of regional service systems. These were built regionally and built in order to
support local practices well; customer interaction was, e.g., very different in Asia
in terms of customer loyalty than in other parts of the world. Again, this led
to (technical) problems when trying to enable service agents to provide service
on a global basis among others due to the lack of a common architecture of the
systems.

4 The PalCom architecture

To give an overview of the PalCom open architecture that we refer to, we have
included a part of our ontology for the architecture in Figure 4 (see [21]). The
ontology may be thought of as a (very) logical view of the PalCom architecture,
showing the concepts (and relationships) that are realized in the architecture.
We do not intend this presentation to be exhaustive, but it gives a picture of
what we are using to guide us in our work as Traveling Architects.

Going back to the scenario of Section 2, we see several of the concepts in the
ontology in play. Alice is an Actor in a PalCom system. She makes use of several
different PalCom Assemblies. One example is the Assembly formed between the
Stone and the TV, which moves the displaying from the Stone to the TV screen
for showing the recording from the ultra sound scan. A second Assembly comes
alive when Alice connects the blood sugar measurement device to the Stone
for storing measurement data, and a third one connects the Stone to the EHR
system, managing the upload of data. The role of each Assembly is to coordinate
a set of Services, communicating over Communication Channels. Each service is
offered by one Node: the TV has a display service, the blood sugar measurement
device has a measurement service, and the EHR system has a registry service.

The software implementation of the nodes is what distinguishes a PalCom
Node from a Non-PalCom Node. The Stone is a PalCom node, because it hosts



Actor

PalCom

Runtime

Component

Node

PalCom

Assembly

Service
Communication

Channel

PalCom

Node

Non-

PalCom

Node

PalCom

Service

Non-

PalCom

Service

PalCom

Component

Synthesized

Service

PalCom

Runtime

Environment

can be

accessed by

is a 

composition

of

Assembly

Descriptor

has

has

1..*

0..*

hosts

0..*

1..*

consists of
1..*

1..*

contains

instance of
1

1
1..*

hosts all or

part of

PalCom

Resource
has

1..*2nd Order

Resource

1st Order

Resource

is a kind of

is a kind of

1

1

1

1

1

executes on

executes on

uses

1..*

is a kind of

is a kind of

0..*

can contain

Resource

Descriptor

has
1

1..*

is a kind of

defines

1..*

hosts

1

is a

kind of

1..*
contains

1 1

Fig. 4. PalCom concept ontology



a PalCom Runtime Environment, which realizes the Stone’s services through
execution of PalCom Runtime Components. The TV, on the other hand, is a
non-PalCom node. Its software does not run as PalCom Runtime Components,
for reasons of legacy code or hardware restrictions, but its services are externally
accessible in the same way as the services of the Stone.

Different kinds of restrictions in hardware are also targeted by the concept of
1st Order Resources, which are associated with physical devices. Examples are
CPU clock speed, memory, bandwidth and power. Taking these into account,
together with 2nd Order Resources such as Services, Nodes, and Actors, makes
it possible for a PalCom Runtime Environment to adapt to varying resource
conditions.

Figure 5 exemplifies how the different concepts may come together in a Pal-
Com system. It can be seen how the Assembly XYZ references services on three
different nodes. The Synthesized Service is a service that PalCom Node B of-
fers on behalf of the Assembly, offering combined functionality not given by the
individual services themselves.

5 Applying the technique

The idea of Traveling Architects has been implemented during a period of about
one year, in the second year of the PalCom project. In total, there have been eight
meetings where the Traveling Architects have held workshops with the people
from application prototyping work packages, and discussed the architecture of
their respective prototypes in relation to the architecture. The general setup of
the meetings followed the workshop example given in the introduction. On each
occasion, the Traveling Architects team consisted of one or two people. There
have also been general architecture meetings, where the Traveling Architects
discussed their findings with the ArchitectureDefinitionTeam. Figure 6 shows
the time line of the meetings and workshops. Next, we present experiences from
these.

5.1 Techniques, artifacts, and meeting types

The meetings and workshops have been organized in different ways, which has
given experience from several types of situations that the Traveling Architects
have experienced. Different aspects of our work as Traveling Architects were
present to varying degrees in the different meetings.

Within each site there has been iterative development based on participatory
design. At the meetings we experienced the difference in the maturity of the
development of application prototypes. This difference has also influenced the
type of meetings held, the techniques applied, and the artifacts present.

Techniques When interviewing the developers at the sites, we did not use an
architecture-specific technique like ATAM [15] or QAW [1]. We performed a more
ad-hoc, exploratory approach, partly because the prerequisites of the meetings



C
o
m
m
o
n
 In
fra
s
tru
c
tu
re

PalCom

Component

PalCom

Component

PalCom

Component

PalCom

Component

PalCom

Component

Commnication Layer

PalCom

Component

PalCom Node A

PalCom Service

Commnication Layer

PalCom Node B

Non-PalCom Node

Non-PalCom

Service

Non-PalCom

Service

Non-PalCom

Service

Commnication Layer

Assembly XYZ

PalCom Service

Runtime Environment

C
o
m
m
o
n
 In
fra
s
tru
c
tu
re

PalCom

Component

PalCom

Component

PalCom

Component

PalCom Service

Runtime Environment

Synthesized

Service

Fig. 5. An example of a PalCom system.

-

Kick-off
April 2005

WP9
May 2005

WP11
June 2005

WP10
July 2005

Trav. Arch
July 2005

WP10
Sept. 2005

WP8
Sept. 2005

WP9
Oct. 2005

WP7
Dec. 2005

Fig. 6. Traveling Architects meetings.



were so different, partly because we wanted to free ourselves from restrictions in
the beginning of the implementation of the concept. Some software development
techniques were used, like the implementation of architectural prototypes [2].
When an idea had emerged, it was beneficial to implement and evaluate it before
an application was based on it. We also used some of the activities described in
RUP [12], e.g. the realization of use cases.

Artifacts Since our task was to design, discuss, and document architecture,
UML diagrams were used excessively to describe different views of the archi-
tecture. We had different stakeholders present at the meetings and they needed
different views on the architecture, as described in [16]. At some meetings, where
stakeholders such as end-users and ethnographers were present, we would draw
the main use cases in order to determine if we agreed on the overall idea of the
system. These use cases were later used to construct test cases to compare the
architectural prototypes and applications with.

When other architects and some developers were present, we discussed the
architecture seen from a module view with class and package diagrams. Other
kinds of developers were more keen on discussing code snippets with the Trav-
eling Architects or looking at allocation views of the design.

Whiteboards were often used as the common physical artifact in the center
of the discussion. They have the benefit of enabling a number of people (there
were often more than seven people at the meetings) to view the same diagram.
Also, changing a figure or a diagram during a discussion is relatively easy on
a whiteboard. We would potentially have benefited, though, from having tool
support for our cooperative work as presented in [9].

Meeting types When we started the implementation of the Traveling Archi-
tects concept, we had imagined that the meetings would all be consisting of an
aspect of documentation of the architecture and an aspect of designing archi-
tectures. Due to different challenges this was not what happened. At first this
seemed frustrating, but eventually the need for Traveling Architects became
more evident. The Traveling Architects just had a change of responsibility to
often be more communicators than designers. These are examples of the types
of meetings we have had:

– Discovering architectural requirements
The developers had a somewhat clear view of the requirements of the applica-
tion to be built, but they had not articulated them. The Traveling Architects
thus had to distill from their knowledge what had architectural significance.
Since the Traveling Architects are there to discuss architecture and often are
not domain experts, this is not optimal.

– Architectural reviews
The designers had documented the architecture before the meeting and we
went through it together. This made the architecture more clear for the
designers and gave the Traveling Architects real input for the PalCom ar-
chitecture. A number of people interested in architecture met to discuss the



architecture that we had defined at one of the prototype meetings. A lot
of architectural discussions were triggered. This was interesting for most of
the attendants but not so beneficial for the specific prototype architecture,
because there were too many architects present.

– Documenting architectures
A prototype had been implemented, but the process of developing it had
been unstructured and there was no documentation of it. The Traveling
Architects went through parts of the code together with the developers and
documented the main parts.

– Designing architectures
Some developers had clear architectural requirements and designing an archi-
tecture was a natural next step. This aspect in a meeting was very welcome.

– Designing prototypes
A Traveling Architects meeting could be placed within a design meeting for
a prototype to be built. It was useful to have a connection to the PalCom
architecture in the discussion, but it was often difficult for the Traveling Ar-
chitects to give input to the discussion about details in the specific prototype
design.

6 Experiences

After some time as Traveling Architects, we look back at the work and the
results, and we can see benefits of the work. Generally, the Traveling Architects’
visits have worked as good opportunities for the prototype teams to discuss their
architectures and have given valuable input to the PalCom architecture per se.

The work has given a number of benefits to the PalCom project, which we
believe in themselves motivate the costs in terms of traveling and effort:

– The ArchitectureTeam has got hands-on experience with the prototypes.
– The knowledge of the status of the different prototypes has been spread

within the project.
– The deeper insight into the prototypes made it possible for the architects to

guide which requirements that are special for the different prototypes and
should thus be focused on.

– There has been an increase in cross-partner collaboration.
– We have found new tools for the PalCom “toolbox”, where development

tools and software components are collected for use by other parts of the
project. One example is a video streaming component developed in WP10,
which was spotted as directly usable also in WP9.

– The architectures of the application prototypes have become clearer.
– Last, but not least, the software designs were documented.

We have also got an overview of the “hotspots” in the requirements and
the architecture. These hotspots are issues spanning over several work packages,
such as



– the location and role of the Assembly Descriptor in a PalCom system. The
Assembly Descriptor specifies an assembly, which defines compositions of
services and coordination between them.

– the sharing of data between services on the same device.
– the need for remote contingency handling, i.e. for dealing with errors that

occur on other devices than the one an actor is interacting with.
– the distinction in PalCom between a Service and a Resource.
– the management and storage of data: when should it be handled locally, and

when should we use a centralized model?
– the issue of partitioning a system into services of appropriate size and com-

plexity.

In the challenging context of the PalCom project, the Traveling Architects
initiative has helped keeping the focus on the architecture, and on the project
as a whole. It has also helped speeding up the influences in both directions,
between the prototypes and the architecture. Hopefully, in this way it has had
a positive impact on the quality of the software architecture. Even though we
do not have firm evidence of the way that the technique influences quality at-
tributes, we speculate that the technique itself mostly influences architectural
quality attributes (cf. the characterization of Bass et al.[3]) such as buildability
and conceptual integrity. When speaking of conceptual integrity as it is described
in [6] one normally refers to one system. In PalCom the situation is a bit different
since there is no one system, on the contrary there exists an unlimited number of
subsystems, that can stand alone or work with the others. And it is this strong
challenge of construction of these small subsystems, that makes conceptual in-
tegrity important for PalCom. One major goal of the Traveling Architects is to
achieve this conceptual integrity.

Enhancing system quality attributes (such as modifiability, availability, and
performance) is probably more tied to the possible expertises of the individual
architects traveling.

Moreover, It is a well known phenomenon that meeting face-to-face has ad-
vantages, compared to other types of communication, such as e-mail or phone
conferences, see e.g.[22]. This is emphasized, e.g., in Coplien’s patterns Lock-
EmUpTogether and FaceToFaceBeforeWorkingRemotely [8] and was also expe-
rienced in our work as Traveling Architects.

Regarding the size of the Traveling Architects team, we feel that two persons
was a good size, given the size of the prototype teams of about five persons. It
is good not to be alone as Traveling Architect, and to be able to discuss things
with the other architect directly at the meetings.

7 Conclusions and Future Work

Traveling Architects is clearly a promising technique. In the PalCom project, it
has helped us work towards the definition of a common software architecture,
with development teams spread across Europe. The setting is that the teams
work in an iterative, experimental and incremental way, in close contact with



end-users, and with limited central control. We have noted a number of con-
crete benefits already, of which the improved communication and spreading of
knowledge in the project is the most apparent—the Traveling Architects have
often been as much communicators as architecture designers. In the long run, we
believe that our effort will lead to a higher quality of the software architecture.

We have seen advantages of applying concepts from participatory design to
the creation of software architectures. Consciously working with UML diagrams,
whiteboard drawings and code as artifacts has helped the active collaboration
between architects and developers, and made the architecture more concrete for
its users, the developers.

A number of different types of Traveling Architects meetings have been tried.
Our conclusion here is that the documentation and design of architectures are
the main ways of obtaining value from the meetings. What we had not expected,
but what came as a positive side effect, was the communication of architectural
requirements and ideas that were not already in use.

A relevant question is that of generalizability: can the Traveling Architects
concept be successfully applied to projects other than ours, e.g. to industry-
only projects? Yes, we believe it can. We have given two examples of large,
distributed development projects with limited central control and iterative devel-
opment strategies, where the technique could presumably have been successfully
used. In particular, we think that the hands-on aspect of Traveling Architects is
beneficial.

The first round of Traveling Architects has been exploratory and experimen-
tal. In our continued work, we plan to apply the technique more systematically.
Now that we have more experience with it, we can put up clearer goals for each
meeting, and apply more techniques from participatory design such as mock-ups,
situation cards, or future workshops. In the end, we hope to be able to provide
a strong, scientific evaluation of the technique of Traveling Architects.

Acknowledgements

The research presented in this paper has been partly funded by 6th Frame-
work Programme, Information Society Technologies, Disappearing Computer II,
project 002057 ‘PalCom: Palpable Computing – A new perspective on Ambient
Computing’ (http://www.ist-palcom.org)

References

1. M. R. Barbacci, R. Ellison, A. J. Lattanze, J. A. Stafford, C. B. Weinstock, and
W. G. Wood. Quality Attribute Workshops (QAWs), 2nd edition. Technical Report
CMU/SEI-2002-TR-019, 2002.

2. J. E. Bardram, H. B. Christensen, and K. M. Hansen. Architectural Prototyping:
An Approach for Grounding Architectural Design and Learning. In Proceedings
of the 4th Working IEEE/IFIP Conference on Software Architecture, pages 15–24,
Oslo, Norway, 2004.

http://www.ist-palcom.org


3. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-
Wesley, 2nd edition, 2003.

4. K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,
1999.

5. J. Blomberg, L. Suchman, and R. Trigg. Reflections on a work-oriented design
project. In Proceedings of PDC’94, pages 99–110, 1994.

6. F. P. Brooks. The Mythical Man-Month: Essays on Software Engineering. Addison-
Wesley, 20th anniversary edition, 1995.

7. M. Christensen, A. Crabtree, C. Damm, K. Hansen, O. Madsen, P. Marqvardsen,
P. Mogensen, E. Sandvad, L. Sloth, and M. Thomsen. The M.A.D. experience:
Multiperspective Application Development in evolutionary prototyping. In E. Jul,
editor, ECOOP’98 – Object-Oriented Programming. Proceedings of the 12th Euro-
pean Conference, pages 13–40. Springer Verlag, 1998.

8. J. O. Coplien and N. B. Harrison. Organizational Patterns of Agile Software De-
velopment. Prentice Hall, 2004.

9. C. Damm, K. Hansen, M. Thomsen, and M. Tyrsted. Creative object-oriented
modelling: Support for creativity, flexibility, and collaboration in CASE tools. In
Proceedings of ECOOP’2000, pages 27–43, 2000.

10. The EHR Observatory. http://www.epj-observatoriet.dk/english.htm.
11. M. Fowler. The new methodology. http://martinfowler.com/articles/

newMethodology.html, 2005.
12. D. Gornik. IBM Rational Unified Process: Best practices for software development

teams. Technical Report TP026B, Rev 11/01, IBM, 2001.
13. J. Greenbaum and M. Kyng, editors. Lawrence Erlbaum Associates, 1991.
14. K. M. Hansen and H. B. Christensen. Component Reengineering Workshops: A

low-cost approach for assessing specific reengineering costs across product lines. In
Proceedings of the 8th European Conference on Software Maintenance and Reengi-
neering (CSMR 2004), pages 154–162. IEEE Press, 2004.

15. R. Kazman, M. Klein, and P. Clements. ATAM: Method for architecture evalua-
tion. Technical Report CMU/SEI-2000-TR-004, 2000.

16. P. Kruchten. The 4+1 view model of architecture. IEEE Software, 12(6), 1995.
17. G. Meszaros. Archi-Patterns. In Proceedings of the conference on Pattern Lan-

guages of Programming, St.Louis, 1997.
18. P. Mogensen and R. Trigg. Using artefacts as triggers for participatory analysis.

In M. Muller, S. Kuhn, and J. Meskill, editors, Proceedings of the Participatory
Design Conference (PDC) 1992, pages 55–62. CPSR, 1992.

19. OMG. Unified Modeling Language specification 1.5. Technical Report
formal/2003-03-01, Object Management Group, 2003.

20. The PalCom Project. http://www.ist-palcom.org.
21. PalCom. PalCom External Report 31: Deliverable 32 (2.2.1): PalCom Open Ar-

chitecture – first complete version of basic architecture. Technical report, PalCom
Project IST-002057, December 2005.

22. S. Teasley, L. Covi, M. S. Krishnan, and J. S. Olson. How does radical collocation
help a team succeed? In CSCW ’00: Proceedings of the 2000 ACM conference on
Computer supported cooperative work, pages 339–346, New York, NY, USA, 2000.
ACM Press.

http://www.epj-observatoriet.dk/english.htm
http://martinfowler.com/articles/newMethodology.html
http://martinfowler.com/articles/newMethodology.html
http://www.ist-palcom.org

