
An Architecture for Migrating User Interfaces

David Svensson, Boris Magnusson
Dept. of Computer Science, Lund University

Ole Römers väg 3, Box 118, 221 00 Lund, Sweden
{david|boris}@cs.lth.se

Abstract

The MUI project looks at flexible ways of creating user-initiated con-
nections between services in wireless networks. A central idea is to migrate
user interfaces from controlled devices to devices with better input/output
capabilities. The paper shows the different parts of the MUI architecture,
and motivates design choices. An initial implementation and a framework
for building MUI services are described.

1 Introduction

MUI (Migrating User Interfaces) is an architecture for services in wireless net-
works, where the user can connect and combine services in a simple, yet flexible,
way. User interfaces can be migrated between devices, so the user can control
several services from one device. MUI is developed as an ongoing research pro-
ject at the department of computer science, Lund university. This paper presents
the MUI architecture and the thoughts behind it. It focuses on the current state of
the architecture, and on the implementation of the system.

MUI is initially designed to operate in networks of limited physical range,
typically within a room, or even in networks formed between devices carried by
a single person. This can be a very dynamic environment, where services enter
and leave networks quite frequently, as people move around. This, in turn, puts
requirements on the architecture: it must be smooth and simple to discover new
services and connect to them. The diversity of equipment also requires the devices
to interact with minimal or no preparation in advance. We think that the need for
non-pre-planned communication is best fulfilled by defining interfaces at a very
general level. Attempting to standardize the protocol for each interesting combin-
ation of services is, as we see it, not feasible—that process would be too complic-
ated and time-consuming, as the number of services in the networks continues to
grow. Instead, in the MUI architecture, a service should just present general-level
information about the data it can provide and consume. It is up to the user to
connect it to suitable services, with matching data types.

User interfaces are important in this context. To allow for the flexible con-
nection of services, a service should be able to show an interface to the user,

1

Audio

User-interface

information

data
information

User-interface

Figure 1: An example scenario with a handheld computer, an MP3 player, and
loudspeakers.

where the communication with another service can be controlled in more detail.
It should be possible to show the interface on a device with suitable input/output
resources, such as display and keyboard. Therefore, migrating user interfaces
between services is a central concept in the architecture, and user interfaces have
got special attention during our initial work. We view a user interface as a service
among other services, but it has a special protocol associated with it, which will
be presented in section 8.

The devices in the networks will often be very small, with limited memory
and processing power. This gives further requirements: the architecture should
not rely on facilities such as IP network connectivity or graphical displays on
all devices, but allow a light-weight implementation. Our envisioned underlying
technology for network communication is Bluetooth [2], even if the initial imple-
mentation with simulated devices uses IP, as will be discussed in section 9.

The paper continues with an example scenario, and a discussion about some
previous work within this problem domain. Sections 4 through 8 look at different
parts of the MUI architecture. In section 4, the fundamental structure of services
and connections is presented. Section 5 deals with the discovery protocol, and
section 6 with MUITP, the binary transport protocol for connections. Two proto-
cols with XML messages, for connecting services with RemoteConnect and for
representing user interfaces, are explained in sections 7 and 8. A presentation of
the implementation, conclusions, and future work round off the paper.

2

(a) (b)

Figure 2: A migrated user interface for loudspeakers, before (a) and after (b)
adjusting the volume.

2 A Scenario

Figure 1 illustrates an example scenario where the architecture is at work: with a
handheld computer in his hand, and a portable MP3 player in his pocket, a user
enters a room where a set of loudspeakers are in the corner. The MP3 player
and the loudspeakers show up as services in a browser application on the hand-
held. The user can see that they match, and connects them by joining them in the
browser. Now, the MP3 player sends its music to the loudspeaker. The volume is a
little low, though, so the user chooses to control the loudspeakers by clicking their
service in the browser. A user interface is moved to the handheld and shown. It
may look as in figure 2 (a). The user presses “Volume up”, the volume is adjusted,
and he can enjoy the music. At the same time, the user interface on the handheld
is updated to that of figure 2 (b). If he wants to control also the MP3 player from
the handheld, a user interface can be obtained for it in the same way.

Tables 1 and 2 show XML documents that are transferred in this scenario. The
document in table 1, which describes the user interface, is what the loudspeakers
send when connected to from the handheld. Table 2 shows the document that is
sent when the volume has been changed, so the user interface can be updated on
the handheld.

3 Previous Work

Jini from Sun [1] has targeted many of the same requirements as MUI, and could
be used in the scenario above. It is an architecture where services register their
presence at a lookup service, so they can be found and used by clients. The
lookup service distributes proxy objects, which are downloaded to clients and used
for communicating with the service. The client knows about the programmatic
interface of the proxy, but does not need to know about its implementation in
order to use it.

One problem we see in Jini is that the proxy interfaces are quite specific. Sun
and partners are standardizing interfaces for printers, scanners, storage devices,
etc. This means that clients have to be written for using a specific kind of service,
and as new kinds services are invented, new clients have to be written. We hope
to relax this in MUI, with general-level interfaces.

3

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE UI SYSTEM "mui-ui.dtd">
<UI text="Loudspeakers">
<Button text="Volume up" command="volumeUp"/>
<Button text="Volume down" command="volumeDown"/>
<Panel text="Volume">
<Label text="Low"/>

</Panel>
</UI>

Table 1: An XML document for the loudspeaker user interface. There are two
buttons with commands attached, and a panel with an inner label.

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE UIUpdate SYSTEM "mui-ui.dtd">
<UIUpdate element="/1/3/1" text="Normal"/>

Table 2: A UI update for the user interface of table 1. The syntax for the element
attribute is a restricted form of the XPointer child sequence syntax (see [18]). In
this example, the attribute refers to the label of the document.

Another aspect to Jini is that it is heavily tied to Java. The proxy objects
are Java objects, typically communicating with the service using RMI (Remote
Method Invocation, see [14]). When considering small, embedded devices, this
makes Jini services bulky. We see the need for allowing implementations in other
languages, such as Smalltalk or C.

There is a specification for user interfaces in Jini, in the ServiceUI API [7].
The user interfaces are associated with a service, and are written to use the proxy
object interface of that service. A problem, as we see it, is that the user interfaces
themselves have specific programmatic interfaces and different semantics. As
new services are standardized, they are expected to come with new user-interface
types, so clients will still have to be written against a specific service.

Web Services [16], the technology for application-to-application communic-
ation on the Web, is also interesting to look at in relation to MUI. There is a
language, WSDL, for describing a Web service, by listing messages sent and
received, and specifying message exchange patterns. The description has to be
known to both the service requester and the service provider, together with some
knowledge about the semantics of the service. The semantics can be encoded as
different kinds of metadata, but, as noted in [17], current description technologies
are not sufficient for describing the complete semantics of complex services.

The Speakeasy project at the Palo Alto Research Center [4, 5] introduces the
term recombinant computing for an architecture where the user can combine func-
tionality from several services into one. Like MUI, they have an approach of

4

generic interfaces for letting the user combine services in new ways. Other key
concepts in their framework are mobile code and user-in-the-loop interaction.
Mobile code means proxy objects, like in Jini, that are downloaded to clients and
executed there. This requires some platform-independent code, and they have
used Java in their implementation. For discovery and user-interface they seem to
have used Jini. It is unclear to us how light-weight Speakeasy implementations
can be. User-in-the-loop interaction means that the user should always be in con-
trol when connecting services, leaving it up to him to make sure the connection
makes sense. The latter point, the authors claim, helps keeping the interfaces
small and generic.

In a previous project [6], we implemented a remote-control scenario for two
devices with real hardware, where Bluetooth was used for the wireless commu-
nication. There was a VCR, which could be discovered from a Palm handheld.
A remote-control user interface was downloaded to the handheld, and the VCR
could be controlled by clicking buttons in the interface. With the experiences
from that project, we are now working with simulated devices communicating
over IP—this makes it easier to shape the architecture for multi-device scenarios.

One thing we found in the previous project considered the representation of
the user interfaces. There, they were contained in small Java applications, J2ME
MIDlets [12], that were downloaded and installed on the client device. We did not
use Jini, but our own protocol for discovering and migrating the interfaces. We
felt that using Java applications for the interfaces was a bit heavy-weight, so we
are now working with an XML representation instead. The experiences from the
previous project will be further discussed in section 8.

4 Services and Connections

The architecture of MUI is based on connections between services. A service runs
on some device in the network. The service may represent the whole device, such
as an MP3-player service representing an MP3 player, but there may also be sev-
eral services on a device. The latter would typically be the case for larger devices,
such as laptops. This device agnosticism is also present in Jini: everything is
services, both hardware and software [3].

MUI services implement the interface Service, shown in figure 3. Services
can have subservices in a tree structure, which is useful for grouping services into
logical units. When establishing a connection, one of the two parties must be
a client. Client is a subinterface of Service, which means that clients are
services themselves. The rationale behind this is the following: all clients offer
a particular kind of service, namely the ability to connect to other services. The
methods connectToService and disconnectFromService reflect this.
Clients should also support initiation of connections over the network, using the
RemoteConnect protocol (see section 7).

5

<<Interface>>

Service

getSubservice(index: int) : Service

<<Interface>>

Client

connectToService(info: ServiceInfo) : String

disconnectFromService(id: String) : void

ServiceInfo

name : String

url : String

serviceContentType : String

getSubserviceInfo(index: int) : ServiceInfo

ClientInfo

clientContentType : String

ConnectionInfo

connectionID : String

Figure 3: Classes and interfaces for services, clients, and connections. Not all
aspects of the types are shown, only the most central.

A service holds information about itself in a ServiceInfo. The inform-
ation consists of the name of the service, a URL for connecting to the service,
and the content type offered by the service. The content type is the MIME type
of the data transferred over connections to the service. ServiceInfos can be
nested, reflecting subservice trees. Information about clients, in ClientInfos,
hold an additional item: the content type accepted from services. This is used for
determining whether a client can connect to a certain service.

When a connection is established, a ConnectionInfo is put together. It
contains information about the two parties, and an ID identifying the connection.
The ID can be used for disconnecting later.

MUI connections are like socket connections: bidirectional connections that
stay up until either party closes them or until a network error occurs. As men-
tioned above, the data is of a certain MIME type. It is transferred in chunks,
called documents, and it is normal that several, or many, documents are trans-
ferred over the same connection. The MUITP protocol has been defined for the
binary transport, as will be discussed in section 6.

5 Discovery

For clients to be able to use services, information about the services must reach
the clients in some way. This is handled by a discovery protocol. The information
transferred by the MUI discovery protocol is in ServiceInfos and Connec-
tionInfos. The ServiceInfos can be displayed to the user of an applica-
tion on a device, letting him browse available services and establish connections
between matching client-service pairs. ConnectionInfos are for managing
established connections—disconnecting them, e.g. The messages are in an XML
format, for which DTDs have been defined (see appendices A and B).

6

(a)

Browser
application

Handheld device

Client

Client device

Service

Service device

Inquiry

(b)

Browser
application

Handheld device

Client

Client device

Service

Service device

ClientInfoServiceInfo

(c)

Browser
application

Handheld device

Client

Client device

Service

Service device

ConnectionInfo

(d)

Browser
application

Handheld device

Client

Client device

Service

Service device

ConnectionInfo

Figure 4: Discovering and connecting services.

The MUI discovery protocol relies on having some broadcast mechanism. The
existing implementation uses IP multicast, as discussed in section 9. The protocol
has not yet been optimized to minimize the network traffic.

Figure 4 illustrates the process of discovering and connecting services. There
are three devices: a service device, a client device, and a handheld device with a
browser application. At first, the handheld broadcasts an inquiry (a). The service
and client devices respond by broadcasting their information (b). In the browser
application, the user can now see that the service and the client match, mean-
ing that they can handle the same type of data. He chooses to connect them. A
ConnectionInfo is assembled, and sent to the client using the RemoteCon-
nect protocol (c). The client uses the service URL in the ConnectionInfo for
connecting to the service, and starts receiving data. It also broadcasts information
about the new connection (d).

The risk of partial failure is an issue for discovery. This is one thing that
makes distributed systems more complicated than non-distributed: there is always
a risk that one node goes down in an unclean way, without having the time to
inform the other nodes [3]. This could, e.g., be due to a software crash, power loss,

7

or physical damage. From the other nodes, it can be hard to detect this, because it
may look like a node is simply slow in response. There must be a way to handle
devices that suddenly leave the network without sending out notifications, so that
the lists on all devices can be updated. In Jini, leasing is used to remedy these
problems: all resources that are used by other nodes are leased for a limited time.
If the lease is not renewed regularly, the resource will be removed. This keeps old
resources from filling up memory on devices, and gives a form of self-healing to
the system. In MUI, we plan to implement some leasing mechanism, or to use
a simpler scheme where devices periodically send out broadcasts, signalling that
they are still alive.

6 MUITP

In order to transfer documents over a connection, a transport protocol is needed.
We considered HTTP, but its request-response nature makes it inadequate for
MUI, where any party should be able to initiate a transfer at any time1. Instead,
MUITP was defined (MUI transport protocol).

The protocol works as follows. When a connection is established, both parties
start reading from their input streams. At first, small headers are sent, where the
non-client supplies the content type. The client leaves this header empty. After
that follows a sequence of zero or more documents in both directions, with an
arbitrary delay before and in between. The data of each document is preceded by a
header, containing the length of the data. Any party may terminate the connection
at any time, by simply closing it.

The definition of a new transport protocol leads to a new scheme for URLs.
For simulated devices communicating over IP, a URL may look like

muitp://130.235.16.32:6427/

This URL can be used for connecting to a service listening on port 6427 of
host 130.235.16.32. For a discussion about Bluetooth as the underlying protocol,
and an example of a URL for Bluetooth, see section 9.

An important difference, compared to HTTP, is that in MUI the URL refers
to the connection, not to a document. This is more appropriate in the MUI case,
because the number of documents and identities of individual documents may be
unknown to the client.

On top of MUITP, a protocol is needed for the flow of documents over the
connection—which party should start to send, will there be responses, and so on.
The current approach in MUI is to have an extremely simple protocol for gen-
eral connections, with a little more sophisticated protocols for two special cases:
RemoteConnect and user-interface connections. In the simple case, MUI connec-
tions are uni-directional; only the non-client sends documents. A uni-directional

1This requirement initially comes from UI connections, where commands and UI updates are
sent asynchronously from both parties (see section 8).

8

connection can be combined with a user-interface connection, letting the user con-
trol the data flow through the user interface. This is enough in many applications,
where a service is the provider of some data, but perhaps the protocol will have to
be changed, or split into several subprotocols, as more experience is gained from
building and evaluating prototypes.

7 RemoteConnect

An important feature of MUI is the ability to establish a connection between two
services, and to close it, from a third device on the network. This is handled
by RemoteConnect, a protocol on top of MUITP. The messages of the protocol
are listed in the DTD shown in appendix C. For these XML messages, a special
MIME type has been defined: application/x-mui-remote-connect.

The URLs of MUI clients are RemoteConnect URLs. When an applica-
tion wants to establish a connection, it connects to this URL and sends a Con-
nectRequest. When the requested connection is up, the client sends back an
OKResponse (or an ErrorResponse if something goes wrong). Disconnect-
ing a connection with DisconnectRequestworks similarly.

8 User Interfaces

The second kind of service with a special protocol—besides the RemoteCon-
nect service—is the user-interface service. This service lets user interfaces be
migrated to clients, so that users can control services from a device with suit-
able input/output capabilities. The interfaces are described in an XML format,
of which the loudspeaker document in table 1 is an example and whose DTD
is shown in appendix D. This format has been given the special MIME type
application/x-mui-ui+xml. There are XML elements for different wid-
gets, with attributes for specifying a certain command to be sent when the widget
is chosen (clicked). The current widget types supported are buttons, labels, and
panels. Natural widgets to add next are text input fields, and perhaps check boxes
and radio buttons. Adding images would also be nice, but that requires a mechan-
ism for referring to external image resources.

When a client connects to a user-interface service, the XML description will
be sent back. It is interpreted by the client, and the user interface is shown with
help from a user-interface library, such as MIDP [13]. Commands are sent to the
service when the user performs an action in the user interface. The service reacts
to these in a domain-specific way: the set of commands is specified entirely be
the service. It does not need to be standardized, because the service provides the
user-interface description itself.

Web forms is a natural comparison for MUI user interfaces. In contrast to
these, we wanted to make the communication two-way. The service can send a
UI update at any time, which will result in a change in the interface on the client,

9

as was exemplified in section 2. The commands and the UI updates give both pull
and push functionality, and more dynamic interfaces than for Web forms. Using
HTTP to accomplish this would require polling, with repeated requests to see if
something has changed. In relation to web forms, the set of supported widgets is
also relevant. With the extensions discussed above, we will support roughly the
same set of widgets as for web forms.

In the previous project [6], we implemented the user interfaces in Java, and
moved a small Java application to the client instead of XML data. The application
was run on the client, displaying the interface. That gave the full power of Java,
and the ability to create very dynamic interfaces, but we also felt that it was a
quite heavy process to transfer, install, and start an application for each interface.
We think XML will suffice for many interfaces, and it has the advantage of be-
ing independent of the client platform—it can be rendered differently depending
on screen-size, e.g. Still, we consider adding an applet-like mechanism to the
architecture, for situations where the power of Java is needed.

9 Implementation and Framework

An implementation of MUI has been written for the standard edition of Java
(J2SE). The network communication is over an IP network, with IP multicast
as broadcast mechanism in the discovery protocol. This implementation allows
simulated devices, entirely in software, that can be used for testing the architec-
ture.

As stated before, the intention is to use MUI in wireless networks. There
are several options for the wireless communication, but Bluetooth [2] has been a
target from the beginning. The standard for using Bluetooth from Java, JSR-82
[10], was constructed mainly for the small-device edition of Java (J2ME, [12]).
In the future, J2ME is indeed a natural choice for MUI, as many devices in the
networks will have limited memory and processing power. Consequently, the
design of the network classes has been made with J2ME in mind.

One goal of the implementation is to provide a framework for construction of
MUI services. The classes and interfaces presented in section 4 are included, but
there are also abstract classes that implement more of the behaviour expected for
typical services and clients. Creating a service should be simple, if it does not
have very specific needs.

We have tried to build the framework with loose coupling between compon-
ents, using events and listeners for their communication. The idea is that when
implementing a new device, it should be possible to pick just the components
needed. Functionality that has been implemented includes the following:

• There is support for discovery. These classes rely on IP multicast, but it
should be possible to change their implementation to use Bluetooth discov-
ery, without changing their interface too much.

10

• RemoteConnect is implemented in the abstract client class, so by default
all clients speak RemoteConnect. A class RemoteConnectClient rep-
resents the client part of the RemoteConnect protocol, and can be used by
applications for establishing remote connections.

• Migratable user interfaces have support in the form of a number of UI com-
ponent classes, which make up the interfaces, a MigratableUI service,
which provides interfaces to clients, and a UIClient, which can receive
the interfaces and manage the client side of the communication. The UI
components can be rendered as XML or as Swing components. On smal-
ler devices, MIDP [13] would be a more suitable user-interface library than
Swing.

• The network classes have been designed to fit into the Generic Connection
Framework, the more light-weight network API that is used in J2ME [11].
A protocol handler has been written for MUITP. When establishing a con-
nection to a URL, the scheme part of the URL will be used by Java library
classes to select the right protocol handler (both for J2SE and J2ME). Ad-
justing the network connections to Bluetooth will mainly mean to rewrite
the protocol handler. The contents of a MUI URL will also have to change,
from IP address and port to a Bluetooth 48-bit device address and a server
channel identifier2, something like

muitp://0050C000321B:5

• There is support for parsing and generating XML messages (used for dis-
covery, RemoteConnect and user interfaces). The DOM API in the Java
standard classes is used. In J2ME, there is no built-in support for XML,
so we will have to use a third-party parser, or write our own. See [9] for
a discussion about parsers and performance considerations with XML in
J2ME.

The MUI implementation is provided as a single JAR file, which can be run
on any platform with J2SE and an IP network. It includes some sample simulated
devices and services: there is a handheld device with a browser application for
discovering and connecting services, a slide-show service, which can be connec-
ted to a screen, and a poetry service, which produces text that can be shown on a
poetry client device. The implementation of the sample services has helped form
the framework.

2Perhaps, it would be the best to make both IP and Bluetooth possible. Then, the URL would
have to be extended with some protocol specifier after muitp.

11

10 Conclusions

This paper has presented the current state of the MUI architecture and implement-
ation, and the ideas behind it. We believe that the basic architecture is simple
and flexible enough to be useful in the context of a wireless network where many
devices provide services that can be used by clients over user-initiated connec-
tions.

Even if the implementation is in Java, the architecture is not Java-specific.
The protocols and XML formats from sections 4 to 8 could be implemented by
devices with runtime environments for programs written in other languages, such
as Smalltalk or C. This could be an advantage where the memory and processing-
power resources are scarce.

The use of XML as data format seems reasonable. The documents following
our DTDs are quite compact, and we get XML’s advantages of a human-readable
format with many available parser implementations. There are XML parsers for
J2ME that should be small enough (see [9]). XML is well established as a data
format in many domains, and standardized as a W3C recommendation [15].

Thanks to the framework, the sample services were quite simple to write. It
seems to be a good idea to provide the basis for a standard service, that can be
used when developing custom services.

11 Future Work

The current work on MUI involves fixing smaller things in the implementation,
and extending the testing of the classes, using the JUnit framework [8]. We will
add a few more widget types, as discussed in section 8. Then, we plan to add sup-
port in the architecture for user-controlled composition of virtual services: several
connected services combined into one, for smoother repeated use. It will be inter-
esting to see if the user interface for the virtual service can be generated from user
interfaces of individual services.

We will investigate further the options for migrating to real wireless hard-
ware, such as Bluetooth. We also want to make it possible for services to provide
applet-style executable code to be run on clients, as a complement to the XML
UI descriptions. Prototypes for more different kinds of services will be built and
investigated. Finally, we will work more on the error handling, especially that
concerning the partial failure issues discussed in section 5.

References

[1] Arnold, Ken, et al. The Jini Specification. Addisson-Wesley. 1999.

[2] Bluetooth.org. https://www.bluetooth.org/

[3] Edwards, W. Keith. Core Jini. Prentice Hall, Inc. 1999.

12

[4] Edwards, W. Keith, et al. Challenge: Recombinant Computing and the
Speakeasy Approach. In Proceedings of Mobicom ’02. September 2002.

[5] Edwards, W. Keith, et al. The Case for Recombinant Computing. Xerox Palo
Alto Research Center Technical Report CSL-01-1. April 20, 2001.

[6] Eklund, Torbj örn and David Svensson. Mui: Controlling Equipment via Mi-
grating User Interfaces. Master Thesis. Department of Computer Science.
Lund Institute of Technology. 2003.

[7] Jini.org. The ServiceUI API specification. http://www.jini.org/
standards/ServiceUI/ServiceUISpec.html

[8] JUnit. Testing Resources for Extreme Programming.
http://www.junit.org/

[9] Knudsen, Jonathan. Parsing XML in J2ME. http://developers.
sun.com/techtopics/mobility/midp/articles/
parsingxml/. March 7, 2002.

[10] Motorola. Java API for Bluetooth Wireless Technology (JSR-82). Specifica-
tion version 1.0a. April 5, 2002.

[11] Ortiz, C. Enrique. The Generic Connection Framework.
http://developers.sun.com/techtopics/mobility/
midp/articles/genericframework/. August, 2003.

[12] Sun. Java 2 Platform, Micro Edition (J2ME). http://java.sun.com/
j2me/

[13] Sun. Mobile Information Device Profile.
http://java.sun.com/products/midp/

[14] Sun. Java Remote Method Invocation (Java RMI) http://java.sun.
com/products/jdk/rmi/

[15] W3C. Extensible Markup Language (XML) 1.0 (Third Edition). W3C Re-
commendation. February 4, 2004. http://www.w3.org/TR/2004/
REC-xml-20040204/

[16] W3C. Web Services. http://www.w3.org/2002/ws/

[17] W3C. Web Services Architecture. Working Group Note. February 11, 2004.
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

[18] W3C. XPointer xpointer() Scheme. Working Draft. December 19, 2002.
http://www.w3.org/TR/xptr-xpointer/

13

A mui-info.dtd

This DTD defines the format for information about MUI services, clients, and
connections:

<!ENTITY % serviceinfoelement
"(ServiceInfo | ClientInfo)">

<!ENTITY % boolean
"(true | false)">

<!ELEMENT ServiceInfo ((%serviceinfoelement;)*)>
<!ATTLIST ServiceInfo
name CDATA #REQUIRED
serviceContentType CDATA #REQUIRED
url CDATA #REQUIRED>

<!ELEMENT ClientInfo ((%serviceinfoelement;)*)>
<!ATTLIST ClientInfo
name CDATA #REQUIRED
clientContentType CDATA #REQUIRED
remoteConnectURL CDATA #REQUIRED>

<!ELEMENT ConnectionInfo (ServiceInfo, ClientInfo)>
<!ATTLIST ConnectionInfo
connectionID CDATA #IMPLIED>

<!ELEMENT ServiceInfoEvent (%serviceinfoelement;)>
<!ATTLIST ServiceInfoEvent
active %boolean; #REQUIRED>

<!ELEMENT ConnectionInfoEvent (ConnectionInfo)>
<!ATTLIST ConnectionInfoEvent
active %boolean; #REQUIRED>

B mui-discovery.dtd

The DTD for discovery contains a single element, except those included from
mui-info.dtd:

<!-- Include declarations from info DTD -->
<!ENTITY % infodecl SYSTEM "mui-info.dtd">
%infodecl;

14

<!ELEMENT Inquiry EMPTY>

C mui-remote-connect.dtd

The messages of the RemoteConnect protocol are defined in mui-remote-
connect.dtd:

<!-- Include declarations from info DTD -->
<!ENTITY % infodecl SYSTEM "mui-info.dtd">
%infodecl;

<!ELEMENT ConnectRequest (ConnectionInfo)>

<!ELEMENT DisconnectRequest (ConnectionInfo)>

<!ELEMENT OKResponse EMPTY>
<!ATTLIST OKResponse
connectionID CDATA #REQUIRED>

<!ELEMENT ErrorResponse EMPTY>
<!ATTLIST ErrorResponse
message CDATA #REQUIRED>

D mui-ui.dtd

The UI DTD defines elements for widgets, commands and UI updates:

<!ENTITY % uielements "(Panel | Button | Label)*">

<!-- UI elements -->
<!ELEMENT UI %uielements;>
<!ATTLIST UI
text CDATA #REQUIRED>

<!ELEMENT Panel %uielements;>
<!ATTLIST Panel
text CDATA #REQUIRED>

<!ELEMENT Button EMPTY>
<!ATTLIST Button
text CDATA #REQUIRED
command CDATA #REQUIRED>

15

<!ELEMENT Label EMPTY>
<!ATTLIST Label
text CDATA #REQUIRED>

<!-- Elements for communication with the user -->
<!ELEMENT Command EMPTY>
<!ATTLIST Command
name CDATA #REQUIRED>

<!ELEMENT UIUpdate EMPTY>
<!ATTLIST UIUpdate
element CDATA #REQUIRED>
text CDATA #REQUIRED>

16

